本报讯 微尺度物质科学国家实验室潘建伟及其同事苑震生、陈宇翱等在国际上首次实现了对光晶格中超冷原子自旋比特纠缠态的产生、操控和探测,向基于超冷原子的可扩展量子计算和量子模拟迈出了重要一步。近日,国际权威学术期刊《自然·物理学》在8月发表的这一期上以研究长文的形式报道了这项重要研究成果。
中国科大研究团队与德国海德堡大学合作,自2010年开始对基于光晶格可拓展量子信息处理研究展开联合攻关。研究团队首先把Rb87超冷原子BEC装载到三维光晶格中的一层,进一步蒸发冷却原子到低于10纳开的超低温,并实现了这层二维晶格中的超流态到Mott绝缘态的量子相变,从而获得了每个格点上有且只有一个原子的人工晶体。研究人员创造性地开发了具有自旋依赖特性的超晶格系统,形成了一系列并行的双阱势,并且在每个双阱势中用光场产生了有效磁场梯度,结合微波场,实现了对超晶格中左右格点及两种原子自旋等自由度的高保真度量子调控。该团队还开发了光学分辨约为1微米的超冷原子显微镜,对这层晶格中的原子进行高分辨原位成像,具备了高分辨、高灵敏度的成像能力。通过以上关键实验技术的突破,该研究团队获得了光晶格中超冷原子量子调控能力的大幅提升,从而首次在光晶格中并行制备并测控了约600对超冷原子比特纠缠对,即可扩展纠缠态制备“三步走”方案中最关键的第一步,迈出了面向可升级量子计算的重要一步。
《自然·物理学》审稿人认为,“这一工作为产生更大的多粒子纠缠态并进行基于测量的量子计算铺平了道路”。在下一步的实验中,该研究团队将进一步降低光晶格中超冷原子的温度,并尝试“三步走”方案中的第二步,实现约百个原子比特的纠缠,开展可扩展量子计算和量子模拟方面的实验研究。
(量子信息与量子科技前沿创新中心 微尺度物质科学国家实验室 科研部)