本报讯 10月29日晚,我校校友、国际顶尖纳米材料学家、美国人文与科学院及美国国家科学院院士杨培东教授做客中国科大“大师论坛”,作精彩报告。报告会由校党委副书记蒋一主持。
报告中,杨培东首先提出了能源短缺与二氧化碳排放导致变暖的全球危机问题。为了解决这一问题,我们需要将现有能源中传统化石燃料的比例大幅度降低,使用更多的可再生能源。杨培东介绍了在实验室中如何通过人工光合作用将太阳能有效利用转化为化学能,该方法的好处在于可以同时解决能源转化及储存这两个问题,仅利用太阳能就可以实现自然界碳循环。
为了实现这一设想,半导体吸收太阳光与催化反应的结合便成为关键难点。在介绍了自然界中植物光合作用的工作过程后,杨培东就人工光合作用的科研发展历程进行了详细介绍。Arthur?Nozik等人早在70年代就提出了基于光二极管的设计想法,但是由于材料的不完善性使得该设计近几年才在杨培东的实验室有了大的突破。理论上这一设计可以达到很高的效率,但传统平整表面上的有限催化活性位点难以有效地利用半导体所产生的大量光生电子,实际效率受到了极大的限制。杨培东课题组使用高比表面的三维结构替代二维平面半导体结构,在阴极采用硅纳米线阵列,并以氧化钛纳米线作为阳极,在表面上修饰催化剂后实现了单光源的人工光合器件。
之后,杨培东又指出真正的挑战是二氧化碳还原的催化剂设计,尤其是考虑到在光催化反应体系中二氧化碳还原和光解水的强烈竞争关系。在杨培东课题组已实现二氧化碳还原较高的选择性前提下,如何实现多电子转移过程便成为了另一难题。基于该挑战,杨培东又提出了另一创造性的概念,利用一些厌氧菌所具有的高效二氧化碳还原效率以及多电子产物高选择性的特性,在人工催化剂中引入细菌进行催化。令人激动的是,细菌可以在半导体上存活并且在界面上建立有效的电子转移,第一次真正实现了人工光合作用。虽然当时的效率仅为0.4%,但已接近自然界光合作用。在第二代设计中,杨培东课题组将反应分成两步,利用分解水产氢来还原二氧化碳为甲烷,效率大大提高至10%。而第三代的设计便如科幻一般,在细菌培养过程中通过表面改性并生长硫化镉量子点,赋予其吸光能力,从而极大提高了催化剂性能。这三代设计实现了半导体与生物体的有效结合,提供了利用二氧化碳及太阳能高效合成化学衍生品的可能性。
报告结束后的互动环节由化学与材料科学学院执行院长杨金龙主持。同学们就有关问题向杨培东进行请教。
(国际合作与交流部 化学与材料科学学院)