2025年12月06日 星期一
首页 往期回顾
PDF下载
发布日期:2025年6月25日
当前期次:1092
版面导航: 1B 2B 3B 4B

中国科大提出厚电极锂离子电池的多梯度微结构设计理论方案

本报讯  中国科大倪勇教授、何陵辉教授研究团队与合作者揭示了梯度厚电极体系内离子/电子协同的传输与反应机制;设计了一种多梯度匹配的厚电极微结构,该结构通过优化的传输与反应动力学,协同增强了厚电极快速充电能力和机械稳定性,为设计高倍率抗损伤电池提供了一种通用的理论方案。相关研究成果发表在《先进能源材料》上。

厚电极由于离子/电子传输的不对称性和显著增加的路径,在电极内部沿着厚度方向存在三个固有的梯度物理场:电解液中的锂离子通量、导电网络中的电子通量以及颗粒表面的反应通量。这种固有的梯度物理场是厚电极快充和机械性能较差的主要原因。研究团队提出了一种通用的厚电极微结构设计原理—匹配原则,该原则将导电剂、孔隙率和粒径的梯度分布与这些固有的通量梯度相匹配,实现了一种多梯度匹配的电极微结构:从隔膜到集流体,导电剂含量和粒径逐渐增加,同时孔隙率逐渐减小。研究团队构建了锂离子电池的力-电-化全耦合模型,通过多物理场仿真模拟验证了该多梯度结构可以协同增强厚电极的快充性能和机械性能,快充性能提高34.04%,同时电极损伤降低20.34%。

研究团队进一步揭示了通量梯度与微结构梯度匹配的内在机理。首先,靠近集流体的导电剂越多,可以为电子传输提供更多可用路径,从而最大限度地减少电子传输阻力。其次,孔隙率分布应与锂离子通量相匹配,使得靠近隔膜的较大孔隙率可以显著提高局部离子扩散系数,在锂离子通量梯度存在的情况下为离子传输提供更多可用路径,从而减轻电解液中的浓差极化。第三,靠近隔膜的较小颗粒可以提高电化学反应速率以匹配该处的高反应通量,从而在锂化末期,靠近隔膜的小颗粒可以抑制电化学反应,减少该区域的锂消耗,使更多的锂转移到集流体侧,使得靠近集流体的大颗粒具有更大的反应电流密度,从而提高电化学反应沿电极深度方向的均匀性。

研究团队的工作系统揭示了梯度厚电极体系内离子/电子传输机制与应力演化规律,从原理上给出了一种普适的厚电极梯度微结构设计准则,这种多梯度微结构可以有效缓解厚电极能量密度和功率密度之间的矛盾,同时抑制电极的分层损伤,从而为厚电极的商业化应用提供理论基础。

中国科大工程科学学院博士研究生牛欣亚博士为论文第一作者,倪勇教授、陆宇阳助理研究员为共同通讯作者。合作者包括中国科大何陵辉教授、北京理工大学廖湘标教授。

(工程科学学院 科研部)